
PIO: The Parallel I/O Library
for CCSM

Raymond Loy

Leadership Computing Facility /
Mathematics and Computer Science Division

Argonne National Laboratory

NERSC HDF5 Workshop, January 20, 2009

With

John Dennis, National Center for Atmospheric Research
Jim Edwards, National Center for Atmospheric Research
Robert Jacob, Argonne National Laboratory

Trends in Climate Model Resolution

� High resolution configuration: 1/10th degree ocean/ice with 0.5
degree atmosphere.

– Ocean: 3600 x 2400 x 42
– Sea ice: 3600 x 2400 x 20
– Atmosphere: 576 x 384 x 26
– Land: 576 x 384 x 17

� Compared to CCSM3:
– Ocean: 73x larger
– Atmosphere: 7x larger

Trends in Climate Model Resolution

� History output sizes for high-resolution configuration for one write of a
single monthly average
– Atmosphere: 0.8 GB
– Ocean: 24 GB (reduced; 100GB if full)
– Sea Ice: 4 GB
– Land: 0.3 GB

� Restart output:
– Atmosphere: 0.9 GB
– Ocean: 29 GB (96 GB with extra tracers)
– Sea Ice: 5 GB
– Land: 0.2 GB
– Coupler: 6.5 GB

Ye Olde Gather/Scatter
with Serial Read/Write

� As old as the first parallel program
� Still state-of-the-art

Example: gather and write

Goals for Parallel I/O in CCSM

�Provide parallel I/O for all component models

�Encapsulate complexity into library

�Simple interface for component developers to �Simple interface for component developers to
implement

�Extensible for future I/O technology

Goals for Parallel I/O in CCSM

�Backward compatible (node=0)

�Support for multiple formats
– {sequential,direct} binary
– netcdf – netcdf

�Preserve format of input/output files

�Supports 1D, 2D and 3D arrays

Climate model decompositions can be complex

Ocean decomposition with space-filling curve

PIO Terms and Concepts:

� I/O decomp vs. physical model decomp

– I/O decomp == model decomp

• MPI-IO+ message aggregation

– I/O decomp != model decomp

• Need Rearranger: MCT, custom

No component-specific info in library� No component-specific info in library

– Pair with existing communication tech

– 1-D arrays input to library; component must flatten 2-D and 3-D
arrays

PIO Data Rearrangement

� Goal: redistribute data from computational layout of the model
(“compdof”) to a subset of processors designated for I/O (“iodof”).
– Provides direct control of number of procs reading/writing to maximize

performance on a platform
– This level of control not possible with pnetcdf API, also more portable

than MPI-IO hints
– I/O decomposition matched to actual read/write

� Initial method: MCT
– Pro: MCT Rearranger is general, allows arbitrary pattern
– Con: Setup is expensive (all-to-all matching); description of the

decompositions can be large due to poor compression of small runs
of indices

� Improved method: Box Rearranger
– Netcdf/Pnetcdf reads/writes naturally operate on rectangular “box”

subsets of output array variables

9

Box Rearranger

PIO Box Rearranger

� Mapping defined by extents of box for each I/O node
– Extremely compact representation easily distributed
– Reverse mapping computed at runtime

� Supports features needed for e.g. ocean vs. land
– “holes” in computational decomposition
– fill values for I/O dofs not covered

� Design evolved driven by performance of CAM integration by J. Edwards
– Initial design conserved space by creating send/receive types on-the-

fly. MPI too slow.
– Important to performance to cache MPI types and compute reverse

mapping up-front during Rearranger creation

11

PIO API

subroutine PIO_init(comp_rank, comp_comm, num_iotasks, num_aggregator,
stride, Rearranger, IOsystem, base)

integer(i4), intent(in) :: comp_rank ! (MPI rank)
integer(i4), intent(in) :: comp_comm ! (MPI communicator)
integer(i4), intent(in) :: num_iotasks
integer(i4), intent(in) :: num_aggregator
integer(i4), intent(in) :: stride
integer, intent(in) :: Rearranger !defined in pio_types

+ PIO_rearr_none ! pio does no data rearrangment, data is assumed to be in it's final form when passed to pio

+ PIO_rearr_mct ! pio uses mct to rearrange the data from the computational layout to the io layout.
+ PIO_rearr_box ! pio uses an internal rearranger to rearrange the data from the computational layout to the io layout.

type (IOsystem_desc_t), intent(out) :: IOsystem ! Output

IOsystem stores the context

PIO API

subroutine PIO_initDecomp(Iosystem,baseTYPE,dims,compDOF,IOdesc)
type(IOSystem_desc_t), intent(in) :: IOsystem

integer(i4), intent(in) :: baseTYPE ! type of array {int,real4,real8}
integer(i4), intent(in) :: dims(:) ! global dimensions of array
integer (i4), intent(in) :: compDOF(:) ! Global degrees of freedom for comp decomposition
type (IO_desc_t), pointer, intent(out) :: IOdesc

Automatically computes start(:) and cnt(:) to define
the I/O mapping

PIO API

subroutine PIO_initDecomp(Iosystem,baseTYPE,dims,lenBLOCKS,compDOF,
ioDOFR,ioDOFW,start,cnt,IOdesc)

type(IOSystem_desc_t), intent(in) :: IOsystem

integer(i4), intent(in) :: baseTYPE ! type of array {int,real4,real8}
integer(i4), intent(in) :: dims(:) ! global dimensions of array
integer (i4), intent(in) :: lenBLOCKS
integer (i4), intent(in) :: compDOF(:) ! Global degrees of freedom for comp decomposition
integer (i4), intent(in) :: ioDofR(:) ! Global degrees of freedom for I/O decomp (Read op)
integer (i4), intent(in) :: ioDofW(:) ! Global degrees of freedom for IO decomp (Write op)integer (i4), intent(in) :: ioDofW(:) ! Global degrees of freedom for IO decomp (Write op)
integer (PIO_OFFSET), intent(in) :: start(:), cnt(:) ! pNetCDF domain decomosition information
type (IO_desc_t), pointer, intent(out) :: IOdesc

start(:) and cnt(:) define the I/O mapping

PIO API

subroutine PIO_write_darray(data_file, varDesc, IOdesc, array, iostat, fillval)
type (File_desc_t), intent(inout) :: data_file ! file information (netcdf or binary)

type (IOsystem_desc_t), intent(inout) :: iosystem ! io subsystem information
type (var_desc_t), intent(inout) :: varDesc ! variable descriptor
type (io_desc_t), intent(inout) :: iodesc ! io descriptor defined in initdecomp
intent(in) :: array ! array to be written (currently integer, real*4 and real8 types are supported, 1

dimension
integer, intent(out) :: iostat ! error return codeinteger, intent(out) :: iostat ! error return code
intent(in), optional :: fillvalue ! same type as array, a fillvalue for pio to use in the case of missing

data

Cached I/O mapping and structures reusable for multiple
writes/reads (via IOdesc)

PIO API

subroutine PIO_read_darray(data_file, varDesc, iodesc, array, iostat)
type (File_desc_t), intent(inout) :: data_file ! info about data file
type (var_desc_t), intent(inout) :: varDesc ! variable descriptor
type (io_desc_t), intent(inout) :: iosystem
intent(in) :: array ! array to be read currently integer, real*4 and real8

types are supported, 1 dimension)
integer, intent(out) :: iostat ! error return code

PIO API

�Recall back-end can write/read either binary or
(p)netcdf

�For (p)netcdf, need some specific calls
– PIO_put_att � nfmpi_put_att_X– PIO_put_att � nfmpi_put_att_X
– PIO_def_dim � nfmpi_def_dim
– PIO_def_var � nfmpi_def_var
– PIO_end_def � nfmpi_enddef

PIO Success Stories

� PIO implementation in CCSM
– Atmosphere: read and write history and restart; all dycores
– Ocean: read and write history and restart
– Land: write history
– Sea Ice and Coupler: in progress

� PIO being used in high-resolution coupled model.

� Backwards-compatible NetCDF mode has value-added
– Rearrangement to IO proc subset followed by gather/write one piece

at a time.
– Avoids overflowing memory of root processor

PIO success stories

� High resolution atmosphere model test cases with the HOMME dynamical
core.

Reading input data
not possible without
PIO!

Figure provided by Mark Taylor, Sandia National Lab

CAM-HOMME on BG/P

Reading input
data using PIO

20

CAM-HOMME with full
atmospheric physics and
aquaplanet surface.

Figure provided by Mark Taylor, Sandia National Lab

PIO Deployment

� In current use on
– Argonne BG/L, Intrepid (BG/P), Jazz (Intel,Linux)
– Blueice (Power5+,AIX), Bangkok (Intel,Linux)
– Jaguar (Opteron,XT4)
– Sandia cluser (Intel+Infiniband)

� PIO currently developed within CCSM repository
– Transitioning development to Google Code

• http://code.google.com/p/parallelio/

21

Future Work

� Understanding performance across zoo of parallel I/O hardware/software

� Current implementation is influenced by (parallel) NetCDF
– Would an hdf5 back-end provide better performance on some

platforms?
– Generalize the API to support an hdf5 back-end?

